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ABSTRACT

This paper addresses the challenging issue of vision-based localiza-
tion in urban context. It briefly describes our contributions in large
environments modeling and accurate camera localization. The ef-
ficiency of the resulting system is illustrated through Augmented
Reality results on large trajectory of several hundred meters.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities—Life Cycle; I.4.8 [Scene
Analysis]: Object Recognition—Tracking

1 INTRODUCTION

This paper describes a vision based system for aided navigation in
large urban environments. We use a single pinhole camera mounted
on a vehicle. The goal is to insert on a screen virtual useful infor-
mation in real-time to guide the driver in large cities. The main
challenging problem is to accurately localize the camera during a
long road trip.

Vision based localization in large environments usually works in
two steps: off-line environment modeling and then on-line local-
ization in this map, see e.g. [1]. By contrast, in small (or multiple
small) environments, those two steps are both done on-line, see e.g.
[2]. This paper addresses both large environments modeling and
accurate localization in urban context. It aggregates our different
works in a complete system for Augmented Reality purposes.

We initially summarize our framework for automatically build-
ing and georeferencing drift free map of large urban environments.
The method we propose relies on a coarse 3D city model to correct
the drift of Structure-from-Motion point cloud. Then, we introduce
a new real-time hybrid localization algorithm that combines View-
point Recognition and on-line Structure-From-Motion. Finally, we
present Augmented Reality results on large trajectories of several
hundred meters.

2 OFF-LINE ENVIRONMENT MODELING

This section describes a process which aims to create a 3D land-
mark database of a city center from a single pinhole camera
mounted on a car. Structure-from-Motion is usually used to tackle
this problem. For example, a full process is proposed in [3] to create
a 3D point cloud from an image set and georeference it by using a
satellite image. The reconstructed model is assumed drift free. It is
almost true in their application scope since a multitude of different
viewpoints are available.

In our context, i.e. a driver navigating in a city, the drift of SfM is
unavoidable since the geometrical constraints are weak: a 3D point
is observed in few consecutive images with almost similar view-
points. Consequently, the resulting reconstruction can be far from
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the real geometry of the scene and thus can not be georeferenced
with the algorithm described in [3].

We propose an alternative solution that simultaneously corrects
a posteriori the reconstruction drift and georeferences the resulting
point cloud. Our main idea consists of using the geometric con-
strains provided by a coarse 3D city model, i.e. a set of textureless
planes (see e.g. figure 1(a)), to improve the accuracy of SfM re-
constructions. City models tend to be widely spread (e.g. Google
Earth) and are globally consistent, i.e. the 3D information they pro-
vide is drift free. Furthermore, their precision is almost satisfactory
(≈ 1 meter).

The a posteriori drift correction module is composed of two sub-
processes (more details are available in [4]):

• First, the estimated trajectory is segmented through a classi-
cal polygonalisation process and an ICP-like algorithm is then
used to estimate the piecewise similarity that optimally fits the
3D point cloud onto the city model. Here, the goal is to correct
the large reconstruction deformations and to regain its global
consistency. Nevertheless, at this step, the reconstruction is
not accurate enough for Augmented Reality purposes.

• Secondly, a bundle adjustment step is used to correct the resid-
ual local error of the reconstruction. In order to keep the con-
straints brought by the 3D city model, a specific cost-function
has been designed. It includes both image information and
city model constraints in a single term. This cost-function is a
reprojection error which encourages optical rays to converge
onto the city model.

3 ON-LINE LOCALIZATION: COMBINING VIEWPOINT
RECOGNITION AND STRUCTURE-FROM-MOTION

Standard localization processes, e.g. [1], use a Viewpoint Recogni-
tion (VR) algorithm (based on vocabulary tree in our case) to as-
sociate 3D features of the database with interest points extracted
from the current images. The associated pose can then be com-
puted. This process is sensitive to viewpoint and lighting variations
between the database and the current view. Moreover, recognition
ambiguities are common in urban context since many buildings may
share the same appearance. Therefore, we introduce a new local-
ization process that combines VR and SfM algorithms. It presents
the advantages to be more robust to viewpoint variations and light-
ing conditions, and provides a pose in unmodeled parts of the en-
vironment. We also briefly describe tools to handle ambiguities in
viewpoint recognition.

The fusion process. One possibility is to combine VR and
SfM by sharing the same map. The SfM algorithm is then used
to add 3D features in the database that reflect the current lighting
conditions and viewpoints. The pose is then estimated more ro-
bustly. This fusion process assumes that a sufficient number of 3D
features of the database are continuously matched to prevent from
SfM drift. Otherwise, the map will be corrupted by erroneous 3D
features. It is well adapted in many scenarios, e.g. small indoor
AR workspaces. However, balancing 3D points with different ori-
gins (off-line database vs on-line SfM) is much more complicated
in large urban context: SfM drift is unavoidable and the number of



recognized features is not always high mainly due to lighting con-
dition instabilities in outdoor environments. Then, we propose an
alternative solution that copes with the specificities of the targeted
application.

Our data fusion scheme uses VR to initialize the SfM and punc-
tually correct its error accumulation. This correction only occurs
when a SfM-keyframe is successfully matched (through Viewpoint
Recognition) to the database and if the associated pose is estimated
with a good confidence (measured by the ratio of inliers vs outliers
in RANSAC and the dissemination of the inliers image observa-
tions). In this case, current SfM errors in position and orientation
are given by the difference between the poses returned by the VR
and the SfM algorithms whereas the dilatation / contraction error is
measured as the ratio of the two trajectories length or by compar-
ing the features common to both maps. The drift correction module
estimates the similarity that, once applied to the SfM map, mini-
mizes the errors described above. This transformation is then used
to change the position, orientation and scale of the SfM map.

Handling ambiguous viewpoints. Localization based on
recognition through vocabulary tree is subject to ambiguous view-
point since it encodes all the descriptors of the database. This is es-
pecially true in urban environments since different building fronts
may have similar appearance. To reduce such ambiguities, we take
benefits from the pose returned by the SfM algorithm to limit the
descriptors space to those associated with the 3D points observed
by the nearest cameras in the database. An exhaustive matching is
then quick enough. The tree structure is not used. However, when
recognition fails for a long time interval, the poses returned by the
SfM algorithm are not certain enough. Thus, in this case, Vocabu-
lary Tree recognition has to be used. Ambiguities are then tackled
by conserving the most likely localization hypotheses returned by
the Vocabulary Tree that are checked with the following frames.

4 EXPERIMENTAL RESULTS

4.1 Building the database
We use a low-cost IEEE1394 GUPPY camera providing gray-level
images with 640x480 resolution at 30 frames per second. Two
video sequences have been acquired along 1500 and 2000 meters
trips in Versailles, France. Without correction, the SfM reconstruc-
tions1 are far from the real geometry of the scene: in the end, errors
in position are up to 70 and 150 meters respectively. After our pro-
cess, this drift is corrected along all the trips. We superimpose the
final reconstructions on a satellite image as illustrated on figure 1.
It shows that the camera trajectories follow the road between the
buildings. The reconstructed point clouds also regain their consis-
tency and are accurately registered on the building contours. The
remaining errors mainly come from inaccuracies in the used 3D city
model. The two final reconstructions form a single georeferenced
database of more than thirty thousand features. Their associated
descriptors are then encoded in a vocabulary tree structure.

4.2 Real-time localization
Two others sequences have been acquired. The two trips (repre-
sented in orange and magenta in figure 2) are both 650 meters long.
They cross parts of the environment modeled with the two learn-
ing sequences. An unmodeled street is also traveled in the second
sequence. The localization process described in §3 provides cam-
era poses with a sufficient accuracy for Augmented Reality, even
in unmodeled and unrecognized part of the city. Figure 2 illustrates
Augmented Reality application through the insertion of virtual nav-
igation information.

Our localization process is highly real-time. SfM and VR are
performed on two different cores in parallel. The mean frame rate
is approximately 40 fps on a Pentium IV dual-core 3GHz.

1We use the key-frames SfM algorithm described in [5].
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Figure 1: (a) Top view of the coarse 3D city model used in our exper-
iments. (b) The final database superimposed on the satellite image.
It comes from two georeferenced SfM point clouds. Their drift has
been corrected with the process described in §2.

Figure 2: Left: the two trajectories used to evaluate the localiza-
tion algorithm described in §3. Right: Augmented Reality application
through insertion of virtual navigation information.

5 CONCLUSION

We present in this paper a complete vision-based system for Aug-
mented Reality in large urban environments. We contribute to both
large environments modeling and camera localization. Experimen-
tal results illustrate the accuracy of the proposed system through
aided navigation scenarios. Further work will devote to on-line SfM
drift correction by the aid of coarse 3D city models.
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