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Abstract

In this system paper, we propose a real-time car localisa-
tion process in dense urban areas by using a single perspec-
tive camera and a priori on the environment. To tackle this
problem, it is necessary to solve two well-known monocular
SLAM limitations: scale factor drift and error accumula-
tion. The proposed idea is to combine a monocular SLAM
process based on bundle adjustment with simple knowledge,
i.e. the position and orientation of the camera with regard
to the road and a coarse 3D model of the environment, as
those provided by GIS database. First, we show that, thanks
to specific SLAM-based constraints, the road homography
can be expressed only with respect to the scale factor pa-
rameter. This allows the scale factor to be robustly and
frequently estimated. Then, we propose to use the global
information brought by 3D city models in order to correct
the monocular SLAM error accumulation. Even with coarse
3D models, turnings give enough geometrical constraints to
allow fitting the reconstructed 3D point cloud with the 3D
model. Experiments on large-scale sequences (several kilo-
metres) show that the entire process permits the real-time
localisation of a car in city centre, even in real traffic con-
dition.

1. Introduction

In this system paper, we aim to tackle the problem of
car positioning in dense urban cities. In fact, since they
allow anybody to easily reach a precise place, car naviga-
tion systems are now widely used. Nevertheless, current
navigation systems based on GPS still present limitations.
Indeed, even if their precision (about 10 meters) is suffi-
cient outside city, GPS systems incur precision and denial-
of-service problems in dense urban areas due to the signal

occlusion by buildings. Moreover, the ergonomy of those
systems should be enhanced: at the moment, the informa-
tion provided to the user (place you are, road to follow, etc.)
are displayed on a virtual map. It could obviously be bene-
ficial to display all those information directly on the image
of the street. Nevertheless, even if many constructors have
begun to introduce a camera in their navigation system for
example for sign detection, the precision of GPS is too low
for augmented reality display.

In this paper, we aim to show how the use of a single
low-cost perspective camera and a coarse 3D model of the
environment, as those provided in GIS database, can im-
prove both the precision and the robustness of GPS naviga-
tion system in dense urban area.

1.1. Single Camera Localisation Overview

Different approaches can been distinguished by the fact
that they use or not strong prior information about the envi-
ronment.

In the first class of propositions, the idea is first to create
offline a database (which is often a 3D point cloud associ-
ated to 2D descriptors) and then to use it online in order to
obtain a global localisation of the camera [6, 2]. The re-
maining problem of those approaches is that the size of the
created database is very high. Moreover, the robustness of
the relocalisation is directly linked to the used descriptor so
that it may be sensitive to illumination and point of view
modification.

To avoid those limits, methods (called monocular SLAM
process) have been proposed in order to localise a single
camera in an unknown environment [10, 3]. Nevertheless,
the computed camera localisation can be very inaccurate on
large scale sequences. In fact, the localisation of the cur-
rent pose of the camera is done with respect to the previous
one. Thus, camera position errors are accumulated. Fur-



thermore, for monocular process, the scale factor of the ob-
tained reconstruction is unknown. Moreover, if it is theo-
retically constant on the entire sequence, it appears that this
scale factor can drift in practice, especially for perspective
cameras because of their restricted field of view.

Thus, our goal is to show how additional simple prior
knowledge about the scene can be exploited to tackle those
two main monocular SLAM limitations, i.e. the scale factor
drift and the error accumulation, in the case of a camera
embedded on a car cruising in a dense city area.

1.2. Proposition Positioning

In this work, the monocular SLAM process we use is
based on Mouragnon et al. proposal [10]. The camera tra-
jectory is initialized thanks to the essential matrix estima-
tion and 2D observations are then triangulated to obtain the
initial 3D point cloud. For each new frame, the current
camera pose is computed from the reconstructed 3D point
cloud. When necessary, i.e. when the number of observed
3D points is too low, the current frame becomes a keyframe:
new observed 3D points are added to the 3D point cloud
and a local bundle-adjustment is applied on the few last key
cameras (i.e. the camera associated to keyframes) and the
associated 3D structure. Since only keyframes are used to
create and optimize the 3D structure, our method aims to
correct those cameras.

The paper will be divided into two parts corresponding
to the two main monocular SLAM limitations. First, we
show that the scale factor between two cameras can be ro-
bustly computed by using information jointly brought by
the known camera position in the car and the monocular
SLAM process (section 2). Then, to obtain a global posi-
tioning of the camera, we propose to avoid residual error
accumulation by matching the SLAM reconstruction with
the coarse 3D models provided in dense city areas (section
3). Note that those two steps are inseparable. In fact, the
scale factor correction is necessary to ensure the robustness
of this 3D matching. The efficiency of those two steps are
respectively validated (sections 2.6 and 3.3) on large scale
sequences (more than 4 kilometres) in real traffic condi-
tions.

2. Scale Factor from Ground Plane
In this part, we will present different methods to obtain

the scale factor of a monocular SLAM reconstruction in the
case of a vehicle displacement. Then, we will describe the
approach we propose.

2.1. Related Works

Many researches have been done on large-scale monocu-
lar SLAM process embedded on a car. An additional sensor
of the car could be used in order to obtain a precise norm

of the camera displacement (odometer [13], etc.). However,
such a deep integration of the system in the car would pre-
vent its use with vehicles which are already in circulation.
Considering this integration constraint, we will consider a
system that relies on a simple camera. However, note that
to obtain a global localisation with SLAM, the process must
be initialized with coarse absolute information as GPS or
georeferenced frame recognition. We will consider in the
following that this step is done.

In order to obtain the scale factor of an inter-camera dis-
placement in monocular SLAM, a prior knowledge about an
absolute distance of the environment is necessary. A clas-
sical approach for cars is to obtain totally [15] or partially
[14] the camera displacement by observing the homogra-
phy described by the road plane. The a priori knowledge of
camera/ground distance is then used to constrain the scale
factor. Limitation of this approach is that the road does not
ever contain useful 2D information and can be largely oc-
cluded (by cars, etc.) so that the camera motion estimation
can fail. In a recent work, Scaramuzza et al. [13, 12] pro-
pose a novel approach for scale factor computation which
is based on nonholonomic constraints and which does not
affect the camera motion estimation. They demonstrate
that the resulting constraints on car displacement and the
knowledge of the offset between the camera and the vehi-
cle’s origin allow the computation of a global SLAM scale
factor. Nevertheless, this method is only efficient in some
turning where the nonholonomic constraint can be correctly
observed. In their context, the scale factor drift is very lim-
ited thanks to the use of omnidirectional camera. Therefore,
they can compute this scale factor only a few times for the
entire sequence. However, when using a perspective cam-
era, the scale factor must be estimated more frequently.

The approach we propose is linked to those two ap-
proaches. We have seen that in our case, the camera mo-
tion is computed with a bundle-adjustment-based monocu-
lar SLAM method [10]. This kind of algorithms is robust,
fast and provides a good estimation of the camera motion.
In this case, the homography undergone by the road plane
can be expressed as a 1-DOF (Degree Of Freedom) prob-
lem, the only parameter being the scale factor. This new
homography parameterisation can be used to estimate ro-
bustly and efficiently this scale factor.

In the following, we will introduce the equation that links
plane motion and homography. Then, we will show how
this problem can be reduced to a 1-DOF problem in our
context. Finally, we will present an algorithm to solve this
problem in a fast and robust way.

2.2. Homography and Planar Motion

Figure 1 shows the general case where the relation be-
tween camera poses and observed plane homography is
well-known [14]. The two camera poses are (R1, t1) and



(R2, t2), that is to say that the transformation between a 3D
point expressed in the world coordinate frame (QW ) and in
the camera one (QCi

) is QW = RiQCi
+ ti.

If we note (R1→2, t1→2) the transformation between the
two cameras, n the plane normal expressed in C1 coordinate
system and d the distance between C1 and the plane, the
coordinate frame transformation of a 3D point Q lying on
the plane is

QC2 =
(

R1→2 −
t1→2nt

d

)
QC1 (1)

and finally the 2D observations are linked by the homogra-
phyH, associated to the 3× 3 matrix H:

qC2 = K

(
R1→2 −

t1→2nt

d

)
K−1qC1 (2)

= HqC1

where K is the camera calibration matrix.

Figure 1. Homography and Planar Motion. The two observa-
tions of a 3D point lying on a plane are linked by homography
defined thanks to the camera displacement and the plane parame-
ters.

2.3. Scale factor estimation as an 1-parameter ho-
mography problem

In our case, the relative displacement of the camera is
estimated up to a scale factor (i.e. R1→2 and t1→2

||t1→2|| are
known) thanks to the monocular SLAM method proposed in
[10]. Besides, the normal n and distance d can reasonably
be considered as known constant values. Thus, points lying
on the ground plane are linked by the homography H(λ)
where λ is the only unknown parameter:

H(λ) = Rt
2R1 + λ

Rt
2(t2 − t1)nt

d
(3)

So, the scale factor estimation can be expressed as the
search of the λ value which minimizes the transfer error
linked toH(λ). Optimising only the scale factor λ is not op-
timal in that (n, d,R1→2, t1→2) values may be not perfect.
However, it appears experimentally that refining all those

parameters causes important convergence problem in our
context, in consequence of bad interest points distribution,
bad detection, dense traffic, etc. That is why we have de-
cided to optimise only the λ parameter. We will now show
how to robustly estimate this parameter.

2.4. Scale Factor Estimation

Three main steps are necessary in order to estimate pre-
cisely and robustly λ: find the couples of 2D interest points
lying on the ground plane, obtain a first estimation of λ and
then refine this value thanks to a robust non-linear optimi-
sation.

2.4.1 Ground Points Identification

This process can be split into two successive tasks, that is to
say finding matches between features points of each image
and identifying, among those matches, those which corre-
spond to points lying on the ground. We can notice that the
first task is already realized by SLAM process. Therefore,
we will focus on the second step of the process.

A usual approach in ground points filtering consists in
exploiting the road planarity. The classical way consists
in using a robust homography estimation thanks to the
RANSAC paradigm [14]. This solution relies on the hy-
pothesis that the larger plane observed in the images is the
floor. Nevertheless, the road is often poorly textured. More-
over, in dense traffic condition, the larger observed plane
may be the chest or the door of a car (see figure 2). There-
fore, this approach may lead to a large amount of scale fac-
tor misestimation.

To prevent this problem, we prefer to simply filter points
from their 3D position. Because the ground/camera dis-
tance is a constant, ground points can be identified from
their vertical distance to the camera. To handle scale factor
drift induced by the monocular SLAM process, a tolerance
on this point/camera distance is introduced. In the following

(a) (b)

Figure 2. Ground point selection. (a) is the result obtained with
classical largest homography support method. (b) is the result of
the proposed method. Red crosses are interest points eliminated
because over the skyline, orange points are candidates rejected by
the respective used criterion. Green points are the final 2D interest
points detected to be on the floor.



experiments, this tolerance is fixed to 15 cm. This solution
relies on the hypothesis that our method is able to correct the
scale factor often enough to avoid a too important drift. As
we will see, the following experiments tend to confirm this
assumption. Otherwise, we could imagine, for example, to
use the method proposed in [12] in order to reestimate the
global scale factor during turnings.

Even if we do the hypothesis that the λ propagated by the
SLAM is almost correct, experiments show that this value
is often too far from reality to allow the correct convergence
of a non-linear λ optimisation. This is due in particular to
false ground interest points detection. Thus, we will first
show how to obtain a linear approximation of λ and then
how to refine it.

2.4.2 Scale Factor Computation

Once the m couples of 2D observations lying on the road
are detected, a coarse value of λ can be estimated. Equa-
tion (2) is equivalent to say that the two vectors qC2 and
HqC1 are collinear and thus their cross product is null:
qC2 × HqC1 = 0. By developing this equality for the set
of m couples, we can easily deduce that λA = B where A
and B are two (3 × m) vectors. The linear least-squares
solution of this equation is then

λ = A+B (4)

where A+ = (AtA)−1At is the pseudoinverse of A.
Then, to reach a fine estimation of λ, its value can

be optimized with a non-linear optimisation process. A
Levenberg-Marquardt algorithm [17] is used to optimise λ
with respect to the symmetric transfer error of the matches:

F(λ) =
∑

i

ρ(||qi
C2−H(λ)qi

C1 ||
2 + ||qi

C1−H(λ)−1qi
C2 ||

2)

(5)
where (qi

Cj
)i are the 2D interest point set on the road pre-

viously detected. ρ is the Tukey M-Estimator [17] and its
threshold is based on Median Absolute Deviation (MAD).

2.4.3 Validation of Scale Factor Estimation

As you can see in figure 2, only a few 2D points may be
on the ground plane (sometimes none). Thus, an a poste-
riori validation of lambda value must be realized. To be
validated, the estimated λ value must allow a correct trans-
fer error (i.e. below 2 pixels) for a sufficient set of ground
interest points. We arbitrarily fix this threshold to 4. If λ
does not respect this constraint, the scale factor propagated
by the SLAM process is kept unchanged. If λ is valid, let’s
show how it is used to correct the SLAM reconstruction.

2.5. Scale Factor Integration

In the following, we note λi the scale factor computed
between cameras Ci and Ci+1. Observe that λi may not be
estimated for each i value, because its a posteriori valida-
tion may fail (section 2.4.3). In our study case (figure 3),
the scale factor has been successfully computed between Ci
and Ci+1 and between Cj and Cj+1 but not for the camera
couples between Ci+1 and Cj .

Figure 3. Integration of scale factor in monocular SLAM. To
fix the scale λj between the 2 last cameras, we propose to modify
the camera position history.

While monocular SLAM process provides a possible po-
sition for the current camera Cj+1, the estimated λj implies
another camera position prediction. To obtain it, it is for
example possible to reestimate inter-cameras distances for
camera couples between Ci+1 and Cj+1 with λj (figure 3).
To fuse two camera position predictions, the more classi-
cal approach is to use a Kalman filter [3]. Nevertheless,
even if Eudes et al. [4] have recently proposed a method to
compute the covariance of local bundle adjustment, it does
not take into account the potential scale factor drift between
Ci+1 and Cj+1. Then the two predicted camera positions
and their associated covariances may not be consistent. In
this case, the Kalman filter may fail [8].

Thus, since the scale factor drift is uncontrolled in our
study case, it is not possible to obtain trustworthy camera
position information from the monocular SLAM process.
Thus, the confidence can only be given to the position pre-
dicted with the estimation of λj , as done in [12] with the
odometer. To refine the obtained geometry (i.e. the cam-
era trajectory between Ci+1 and Cj+1 and the associated 3D
point cloud), it should be necessary to apply a full bundle
adjustment on the predicted geometry. However, because of
real-time purpose, such a solution is not conceivable.

The solution we propose is to improve the prediction
quality by analyzing scale factor drift behaviour. In fact,
experiments (e.g. figure 6(b)) illustrate that the scale fac-
tor drift can often locally be considered as linear. So, the
scale factors we apply to the history is no more λj but a
linear approximation between λi and λj . Furthermore, 3D
points observed by cameras Ci+1 to Cj+1 are triangulated
thanks to the newly computed camera positions (which is a
very fast process). It ensures that the scale factor propagated
by monocular SLAM after the camera Cj+1 will be correct.
Numerical experiments (section 2.6) show that, while being



real-time, this solution supplies accurate camera positioning
results.

In the following section, we will show that the full pro-
posed scale factor correction process (i.e. its estimation
and integration) is fully efficient on large-scale realistic se-
quences.

2.6. Experimental Validation

The scale factor estimation and integration have been
successfully tested on a 4.5 kilometres long sequence (fig-
ure 4(a)). This sequence has been realised in real traffic
condition (figures 2 and 4(b)) with a classical 640 × 480
perspective camera. In the following, we will consider the
localisation provided by a trajectometer as ground truth.

(a) (b)

Figure 4. Experimental sequence. A 4.5 kilometres long se-
quence in real traffic condition.

The reconstruction obtained with Mouragnon et al. [10]
monocular SLAM algorithm can be found in figure 5. 1296
keyframes and 39304 points have been created over the
4.5 kilometres. Thus, in average, a keyframe is created
every 3.4 metres. Comparing the obtained reconstruction
with ground truth highlights the scale factor drift. Note
that, since no scale factor is provided by this method,
a global scale factor has been fixed on the first cameras
thanks to ground truth data for comparison purpose. The
drift phenomenon is numerically confirmed on figure 6(b)
which represents the percentage of error of successive inter-
cameras distances between the obtained reconstruction and
the ground truth. Observe that this figure must be compared
to figure 6(a) which represents the same error but in meters.

For this sequence, normal n and distance d ground truth
was unknown. Thus, note that the used values are very
rough. The obtained result is visually displayed in figure 5
and confirmed on figure 6. We can observe that our method
allows avoiding the scale factor drift. On this sequence,
our method succeeds in scale factor computation for 55%
of the cameras couples. That is to say that the scale factor
can be computed every 6.2 metres in the mean. Neverthe-
less, note that those estimations are not well distributed on
the entire sequence because of traffic, lack of texture on the
ground, etc. The mean obtained inter-cameras distance er-
ror is 6.81% (i.e. 0.21m) with a standard deviation of 5.84%
(i.e. 0.20m).

Figure 5. Reconstructions comparison. The proposed method (in
green) prevents the scale factor drift of classical monocular SLAM
process (in blue).
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Figure 6. Numerical comparison. This figure represents the
inter-cameras distance error for corresponding reconstructed cam-
eras couples and ground truth couples in meters (a) and in percent-
ages (b).

Nevertheless, because of residual error accumulation of
incremental SLAM process, the absolute camera distance
between the obtained reconstruction and the ground truth
grows drastically (figure 5). In the following, we propose to
tackle this problem for dense urban areas.



3. Towards Global Localisation Using 3D City
Models

The goal of this section is to show that the positioning
error accumulation in dense urban area can be efficiently
corrected by using a coarse georeferenced 3D model of the
environment, once the scale factor drift is corrected.

3.1. Related Works

In the car case, the more classical used absolute sensor
is the GPS system [1]. Nevertheless, the precision of this
sensor may be low, in particular in dense area because of
signal occlusion by buildings. Another approach consists in
using georeferenced 3D city models. Sourimant et al. [16]
propose to use them in an inline localisation process. In
order to compute a georeferenced 3D point cloud, they do
not use multiview geometry to estimate the 3D position of
feature points, but the intersection of their backprojections
with the 3D model. For this solution, their work hypothesis
is that the 3D model is perfect and that no object obscures
it. Otherwise, the camera localisation may highly drift.

The solution we propose is based on our previous
work [6] which exploits coarse 3D city models only com-
posed of vertical planes representing the mean planes of
building fronts and with a precision of about 2 meters, as
those provided by GIS database. The idea of our previous
work was to fit an entire SLAM reconstruction with this
model in a posterior process to correct both scale factor drift
and error accumulation. This solution is efficient because
the use of the entire SLAM reconstruction brings many ge-
ometric constraints to the problem.

However, this solution must be adapted for the on-line
localisation problem since the constraints provided by the
knowledge of the entire sequence are lost in this case. In-
deed, while the vehicle is moving in a straight line, con-
straints provided by the model are reduced to the front of the
two sides of the street. Therefore, the model no longer pro-
vides constraints on the displacement along the street axis.
Moreover, the scale factor is only constrained by the dis-
tance that separates these two walls. Since the uncertainty
of the wall position can be important (about 2 meters) with
respect to the street width, the resulting scale factor might
be quite inaccurate.

Nevertheless, in some configurations, 3D city models
can provide enough constraints to estimate a global local-
isation. In fact, turnings in the camera trajectory provide
such a configuration and are easy to detect. Therefore, in
the following, we will introduce a solution that uses a 3D
city model to estimate a global localisation after a turning.
First, we will briefly expose a solution to detect turnings
in trajectory. Then, we will expose how the 3D city model
is exploited to reach a global localisation. And finally, an
experimental evaluation of the process will be provided.

3.2. Integrating 3D City Models

In this section, we will explain how to detect the cases
which are in favour of camera position correction. Then we
will describe how the camera position is robustly corrected
thanks to the 3D model.

3.2.1 Turning Detection

The turnings detection relies on a polygonalisation of the
camera trajectory. For each new key frame, the entire tra-
jectory is approximated by a polyline [7]. The rise of the
number of polyline segments signals a turning. Then, cam-
eras and 3D points can be split into two groups: before and
after turnings.

3.2.2 3D Point Cloud - 3D Model Fitting

ICP methods [11] are designed to fit two 2D or 3D models,
in our case the 3D SLAM reconstruction and the 3D city
model. ICP are composed of two specific steps which are
iterated: the data association and the computation of the
transformation between the two models for this association.
In the following, we will describe those two steps for our
problem.

Data Association. The goal of data association is to
match each entity of the first model with an entity of the
second one. In our case, each reconstructed 3D point Qi

must be associated with its corresponding plane in the 3D
city modelM. Since this plane is unknown, the usual ap-
proach consists in selecting the nearest one [6]. To improve
the robustness, we had the constraint that the plane and the
point must share a similar surface normal orientation. The
surface normal of a point is estimated with Molton et al.
[9] method. Once the normal is computed for Qi, it can be
associated to its nearest plane among those ofM∗, i.e. the
subset of planes whose normal is consistent with the one
associated to Qi:

∀Qi,Πhi = argmin
Π∈M∗

d(Qi,Π) (6)

where d is the normal distance. Notice that the distance d
takes into account that the planes are finite: to be associated
to a plane Π, a 3D pointQi must have its normal projection
inside Π bounds. The hypothesis done in the data asso-
ciation step is that the SLAM reconstruction is not too far
from its real position, in particular to avoid confusing two
successive possible streets. The following experiments will
confirm that such assumption is generally correct.

The matching step is then validated if enough points are
matched before and after the turning. Otherwise, no trans-
formation is computed. In the following experiments, a
minimum of 150 points is required.



Transformation Computation. The goal of the transfor-
mation T we are looking for is to correct the orientation
and the position of the last keyframes. Because the altitude
of the camera is known and that the only rotation we want
to correct is around the vertical axis (in the world coordi-
nate frame), T has only 3 DOF. Observe that in theory, the
scale factor could be reestimated by using the street width
between buildings. Nevertheless, because of the used 3D
model low precision (about 2 meters for each building front
positioning), experiments showed us that this new estimated
scale factor would be very inaccurate. Thus we decide not
to call the scale factor into question.

The problem we want to solve is then:

min
T

∑
i

ρ(d(T (Qi),Πhi
)). (7)

where T (Qi) is the 3D point Qi transformed by T . The
Tukey M-Estimator [5] ρ is used in order to be robust
to residual point-plane bad association. The M-estimator
threshold can be automatically set thanks to the Median Ab-
solute Deviation (MAD). The MAD works with the hypoth-
esis that the studied data almost follow a Gaussian distribu-
tion around the model. Even if this assumption could be
done for each set of points associated to the same plane, it
is not true for the whole reconstruction. So we propose to
use a different M-estimator threshold ξhi per model plane.
This also implies that we have to normalize the Tukey val-
ues on each fragment. For Qi associated to Πhi

:

ρ′hi
(d(Qi,Πhi

)) =
ρhi

(d(Qi,Πhi
))

max
Qj∈Shi

ρhi(d(Qj ,Πhi))
(8)

where Shi
is the set of points associated to Πhi

and ρhi
is

the Tukey M-estimator used with the threshold ξhi
for the

3D point in Shi .
With the cost function (8), each model plane will have

a weight in the minimization proportional to the number of
its associated 3D points. Then, plane with few points could
be not optimized in favour of the others. To give the same
weight to each plane, we must unify all the Tukey values of
their 3D points with respect to their cardinal:

ρ∗hi
(d(Qi,Πhi

)) =
ρ′hi

(d(Qi,Πhi))
card(Shi)

(9)

and the final minimization problem is:

min
T

∑
i

ρ∗hi
(d(T (Qi),Πhi

)). (10)

that we solve using the Levenberg-Marquardt algorithm
[17].

In the following we will show that the entire proposed
method (i.e. the scale factor correction and 3D city mod-
els fitting) allows getting a consistent global position of a
vehicle in dense urban area.

3.3. Experimental Results

In order to have 3D model information, we have tested
the proposed method on the data used in our previous work
[6]. Consequently, note that no ground truth is available for
this sequence. The entire proposed process has been tested
on a 1 kilometre long sequence (figure 8(b)) with a classical
640×480 perspective camera (see figure 8(a)). As in section
2.6), n and d have been roughly estimated.

(a) (b)

Figure 8. Dense urban sequence. An example of video frame (a)
and the followed trajectory (b).

Figure 7 compares the obtained camera trajectory (i.e.
the estimated position of the camera for each key frame) for
3 different reconstructions: the classical monocular SLAM
method proposed by Mouragnon et al., the reconstruction
obtained with the proposed scale factor correction method
and finally the result of the entire proposed method, i.e. the
scale factor correction and the use of coarse 3D model. Note
that for comparison purpose, the 3 reconstructions have
been initialized with the same initial camera position, orien-
tation and scale factor. The reconstruction contains 13276
points and 356 cameras (i.e. a keyframe every 2.8 metres in
the mean).

This figure highlights the drift of classical SLAM pro-
cess. We can see that the scale factor correction (successful
for 45% of couples in this sequence, i.e. every 6.2 metres)
prevents the scale factor drift, which is particularly visible
on the width of the obtained reconstruction. Nevertheless,
it also highlights the residual error accumulation. The full
proposed method reconstruction shows the successful use
of the associated 3D model to correct this error accumula-
tion: the discontinuity of camera trajectory after each turn-
ing highlights those corrections when enough geometrical
information was available. Observe that the ratio between
the robustness and the reactivity of the fitting after each
turning can be easily tuned with the number of point-plane
association threshold (section 3.2.2).

The final obtained reconstruction shows that our entire
method can be successfully used as an alternative for navi-
gation system in dense urban area.
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Figure 7. Dense urban sequence results. (a) is the ground truth, (b) the original monocular SLAM reconstruction, (c) is obtained thanks
to our scale factor process and (d) is the resulting reconstruction with our entire method.

4. Conclusion
In this paper, we have proposed an efficient system to lo-

calise a vehicle in a dense urban area by using a single cam-
era and a coarse 3D model of the environment. First, we
have shown that well-known scale factor drift of monocular
SLAM process can be avoided. In fact, specific constraints
allow us to express the road homography estimation as a
problem with the single scale factor parameter. Then, this
paper highlights that residual unavoidable error accumula-
tion in SLAM process can be corrected by using the global
information brought by coarse 3D city model.

Our experiments on large scale sequences show that the
scale factor can be robustly estimated and that the full pro-
posed process succeeds in positioning, in real-time, a car
cruising in a dense city centre. Future work would include
an enhancement of ground point detection and a global scale
factor computation method. Then it would be interesting to
substitute the 3D model by a road map in order to obtain a
full working navigation system even outside dense cities.
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